On Parametric Sensitivity and Structural Robustness of Cellular Functions -- the Oscillatory Metabolism of Activated Neutrophils

نویسندگان

  • Elling W. Jacobsen
  • Gunnar Cedersund
چکیده

Robustness of cellular functions is a key property of living organisms. Modelling and analysis of the genetic and biochemical networks underlying specific functions will enable quantification of the robustness as well as identification of the specific mechanisms providing robustness. Studies on cellular robustness has so far largely focused on parametric sensitivities, i.e., robustness of functions (behavior) with respect to changes in model parameters. In this paper we argue that robustness analysis of cellular models also should encompass structural robustness, i.e., robustness with respect to perturbations in the model structure. This is important not only to quantify the robustness of the cell functions themselves, but equally important, to gain knowledge about the quality of the model as such. In particular, if the model displays poor robustness against structural perturbations this serves as an indication of a potentially highly uncertain model and hence care must be exercised when interpreting the obtained parametric sensitivities. We here propose a simple method for analysing structural robustness of functions related to bistability and periodic oscillations in intracellular networks. The method is applied to a model of the oscillatory metabolism of activated neutrophils (white blood cells) recently proposed in Olsen et al., Biophys J., 84:69-81, 2003. The model is found to be highly robust against parametric uncertainties, but is shown to display poor structural robustness. Indeed, attempting to divide the model into compartments, with the aim of emulating spatial distributions that exist in vivo, results in a qualitatively different model prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural robustness of biochemical network models-with application to the oscillatory metabolism of activated neutrophils.

Sensitivity of biochemical network models to uncertainties in the model structure, with a focus on autonomously oscillating systems, is addressed. Structural robustness, as defined here, concerns the sensitivity of the model predictions with respect to changes in the specific interactions between the network components and encompass, for instance, uncertain kinetic models, neglected intermediat...

متن کامل

Effect of Nominal Exchange Rate Volatility on Output in Iran’s Economy

Volatility of exchange rate while changes from time to time, is expected to affect firm level operations as well as aggregate level outcomes i.e. macroeconomic performance. This paper, investigates the effects of exchange rate volatility on aggregate production in Iran using a Structural Vector Auto Regressive model with Exogenous Variables (SVARX). The model is estimated based on macroeconomic...

متن کامل

Parametric study of a novel oscillatory wind turbine

Clean energy harvesting and usage has gained considerable attention in the last few decades. While the horizontal axis wind turbines have been used extensively, they have certain defects and functional limitations. In the present paper, a novel oscillatory wind turbine is proposed. The conceptual design of the new turbine together with its configuration is explained. Dynamical equations of the ...

متن کامل

STRUCTURAL DAMAGE DETECTION BY USING TOPOLOGY OPTIMIZATION FOR PLANE STRESS PROBLEMS

This paper aims to introduce topology optimization as a robust tool for damage detection in plane stress structures. Two objective functions based on natural frequencies and shape modes of the structure are defined to minimize discrepancy between dynamic specifications of the real damaged structure and the updating model. Damage area is assumed as a porous material where amount of porosity sign...

متن کامل

Analysis of Response Robustness for a Multi-Objective Mathematical Model of Dynamic Cellular Manufacturing

The multi-objective optimization problem is the main purpose of generating an optimal set of targets known as Pareto optimal frontier to be provided the ultimate decision-makers. The final selection of point of Pareto frontier is usually made only based on the goals presented in the mathematical model to implement the considered system by the decision-makers. In this paper, a mathematical model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005